# **High-Pressure Synthesis and Magnetic Properties of** Layered Double Perovskites $Ln_2CuMO_6$ (Ln = La, Pr, Nd, and Sm: M = Sn and Zr)

Masaki Azuma,\* Shingo Kaimori,<sup>†</sup> and Mikio Takano

Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611, Japan

Received March 31, 1998. Revised Manuscript Received June 2, 1998

 $Ln_2CuSnO_6$  (Ln = Pr, Nd, and Sm) and  $La_2CuZrO_6$  have been stabilized in the same layered double perovskite structure as  $La_2CuSnO_6$  at high pressures of 6–8 GPa. Their crystal structures and magnetic properties were investigated. Replacement of La<sup>3+</sup> by smaller lanthanide ions and  $Sn^{4+}$  by larger  $Zr^{4+}$  increased the buckling of the Cu–O–Cu bonds in the  $CuO_2$  layers. In Nd<sub>2</sub>CuSnO<sub>6</sub>, both the Cu and Nd sublattice were found to exhibit weak ferromagnetism owing to spin canting. The magnetization data showed an anomalous transition at 110 K.

#### Introduction

Since the discovery of the high-temperature superconductivity in  $La_{2-x}Ba_xCuO_4$ ,<sup>1</sup> a large number of copper oxide superconductors have been found. Their common structural characteristic is the presence of two-dimensional CuO<sub>2</sub> sheets. Compounds with the general formula (ABX<sub>3</sub>)(AX)<sub>n</sub> with n = 0,  $\frac{1}{3}$ ,  $\frac{1}{2}$ , and 1 usually crystallize in a series of related structures with such 2D BX<sub>2</sub> sheets, so-called Ruddlesden–Popper phases<sup>2,3</sup> or layered perovskites. For example, SrIrO<sub>3</sub>, Sr<sub>4</sub>Ir<sub>3</sub>O<sub>10</sub>,  $Sr_3Ir_2O_7$ , and  $Sr_2IrO_4$  represent the n = 0-1 phases, respectively.<sup>4</sup> It should be noted that only the last one is an ambient pressure phase, while the others are stabilized at high pressure. The situation is different for  $Cu^{2+}$  compounds. La<sub>2</sub>CuO<sub>4</sub> is the only example of a layered perovskite phase without oxygen vacancies, and the other phases of this series, SrCuO<sub>2</sub>,<sup>5</sup> La<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>8</sub>,<sup>6</sup> and La<sub>2</sub>(Sr,Ca)Cu<sub>2</sub>O<sub>6</sub><sup>7</sup> are oxygen deficient. Combined with tetravalent elements, however, it becomes possible to form the perovskite phases  $LaCu_{1/2}M_{1/2}O_3$  (M = Mn, Ti, Ir, and Sn).<sup>8</sup> These phases are so-called double perovskites, and the configuration of the two B-cations depends on the ionic radius of the M<sup>4+</sup> ion. In La<sub>2</sub>- $\tilde{CuTiO_6}$  the  $Cu^{2+}$  and  $Ti^{4+}$  ions are distributed randomly.<sup>9</sup> The Cu<sup>2+</sup> and Ir<sup>4+</sup> (or Mn<sup>4+</sup>) ions are arranged in the rock-salt configuration.<sup>10</sup> La<sub>2</sub>CuSnO<sub>6</sub> is the only double perovskite phase with a layered configuration of B-cations.<sup>11</sup> Despite the presence of the CuO<sub>2</sub> sheets, this material does not show superconductivity, even at an appreciable level of Sr or Ca substitution for La.<sup>12</sup> As shown in Figure 1, Cu-O-Cu bonds in the  $CuO_2$ sheet of this material are heavily buckled, and thus the average bond length is close to 4 Å. This value is considerably larger than a typical value of 3.9 Å for superconductors with hole carriers. It was also shown that when doped with holes, the in-plane Cu-O-Cu bond length increased while that out-of-plane shrank. These results suggested that the conduction band in this compound was comprised of  $d_{z^2}$  orbitals rather than of  $d_{x^2-v^2}$  as in other layered cuprates.

In this paper we report the replacement of La by smaller lanthanides in order to shrink the Cu-O-Cu bond length and possibly realize superconductivity in the doped compounds. Ln<sub>2</sub>CuSnO<sub>6</sub> with smaller lanthanides, Pr, Nd, and Sm, were stabilized at high pressure, and their magnetic properties were examined. Stabilization of the layered double perovskite La2-CuMO<sub>6</sub> was also studied, and La<sub>2</sub>CuZrO<sub>6</sub>, a new example of the layered double perovskite with a larger tetravalent cation, was discovered.

## **Experimental Section**

**Sample Preparation.** Stoichiometric amounts of Ln<sub>2</sub>O<sub>3</sub> (Ln = La, Nd, and Sm), CuO and SnO<sub>2</sub> were mixed, pressed into pellets, and heated at 1000 °C for 4 days in air with intermediate regrindings every day. Mixtures of Pr<sub>6</sub>O<sub>11</sub>, CuO, SnO, and SnO<sub>2</sub> were chosen as starting reagents for the Pr<sub>2</sub>-CuSnO<sub>6</sub> sample. Almost a single phase sample of the double perovskite was obtained for Ln = La, while the others were

<sup>&</sup>lt;sup>\*</sup> To whom correspondence should be addressed.

<sup>&</sup>lt;sup>†</sup> Present address: Osaka Research Laboratories, Sumitomo Electric Industries, Ltd., 1-1-3, Simaya, Konohana, Osaka, 554 Japan.

<sup>Industries, Ltd., 1-1-3, Simaya, Konohana, Osaka, 554 Japan.
(1) Bednortz, J. G. K.; Müller, A. Z. Phys. 1986, B64, 189.
(2) Ruddlesden, S. N.; Popper, P. Acta Crystallogr. 1957, 10, 10.
(3) Ruddledsen, S. N.; Popper, P. Acta Crystallogr. 1958, 11, 54.
(4) Kafalas, J. A.; Longo, J. M. J. Solid State Chem. 1972, 4, 55.
(5) Okada, H.; Takano, M.; Takeda, Y. Physica 1991, C166, 111.
(6) Gulloy, A. M.; Scott, B. A.; Figat, R. A. J. Solid State Chem.
1994, 113, 54.
(7) Cava, P. L. Batlage, P. 1000, D. M. J. Solid State Chem.</sup> 

<sup>(7)</sup> Cava, R. J.; Batlogg, B.; van Dover: R. B.; Krajewski, J. J.; Waszczak, J. V.; Fleming, R. M.; Peck, W. F., Jr.; Rupp, L. W., Jr.; Marsh, P.; James, A. C. W. P.; Schneemeyer, L. F. *Nature* **1990**, *345*, 602

<sup>(8)</sup> Anderson, M. T.; Greenwood, K. B.; Taylor, G. A.; Poeppelmeier, K. R. *Prog. Solid State Chem.* 1993, *22*, 197.
(9) Ramadass, N.; Gopalakrishnan, J.; Sastri, M. V. C. *J. Inorg. Nucl. Chem.* 1978, *40*, 1453.

<sup>(10)</sup> Blasse, G. J. Inorg. Nucl. Chem. 1965, 27, 993.

<sup>(11)</sup> Anderson, M. T.; Poeppelmeier, K. R. Chem. Mater. 1991, 3, 476.

<sup>(12)</sup> Anderson, M. T.; Poeppelmeier, K. R. J. Solid State Chem. **1993**, *102*, 164.

<sup>(13)</sup> Izumi, F. The Rietveld Method; Oxford University Press: Oxford, U.K., 1993; Chapter 13.





Figure 1. Crystal structure of La<sub>2</sub>CuSnO<sub>6</sub>.

mixtures of Ln<sub>2</sub>CuO<sub>4</sub>, Ln<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub> (pyrochlore), and CuO. These mixtures were treated at high pressure and high temperature for 30 min in a conventional cubic-anvil type high-pressure apparatus. The conditions to obtain the most homogeneous samples were 6 GPa and 1000 °C for Ln = Pr and 6 GPa and 1200 °C for Ln = Nd. Considerable amounts of  $Sm_2CuO_4$  and  $Sm_2Sn_2O_7$  remained in the Ln = Sm sample even after the treatment at 8 GPa and 1200 °C. Higher pressure and/or temperature appears to be necessary to obtain a single phase sample of  $Sm_2CuSnO_6$ . Samples of  $La_2CuMO_6$  (M = Ti, Ir, and Zr) were prepared from the mixtures of La<sub>2</sub>O<sub>3</sub>, CuO, and MO<sub>2</sub> in air at 1000 °C. Single phase samples were obtained for M = Ti and Ir in the same form as that reported before,<sup>8-10</sup> whereas a mixture of La<sub>2</sub>CuO<sub>4</sub>, La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (pyrochlore), and CuO was obtained for La<sub>2</sub>CuZrO<sub>6</sub>. These were treated at high pressure and high temperature, as mentioned later, and examined as well.

Structural Analysis. Powder X-ray diffraction data were collected for each sample with a Rigaku RINT 2000 difractometer equipped with monochromator (Cu Ka radiation, 30 kV, 200 mA). Si powder (NIST-640b) was used to calibrate the goniometer. Data were collected from 20 to 120° with a step of 0.02°. Lattice parameters and the atomic positions were refined by a Rietveld technique using Rietan software.<sup>14</sup> Isotropic atomic displacement parameter B was fixed and not refined. Only lattice parameters were refined for Sm<sub>2</sub>CuSnO<sub>6</sub> because of the mixing of considerable amounts of Sm<sub>2</sub>CuO<sub>4</sub>, Sm<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>, and some unknown impurities.

Magnetic Measurements. A SQUID magnetometer (Quantum Design MPMS2) was used to measure the temperature and field dependence of the magnetization. For the temperature dependence, measurements were done on heating in a fixed field after zero-field cooling (ZFC) and cooling in the same fixed field (FC). The magnetization curve at a fixed temperature up to  $9 \times 10^4$  Oe was measured after zero-field cooling by means of an extraction method using Quantum Design PPMS susceptometer.

#### **Results and Discussion**

Structure of Ln<sub>2</sub>CuSnO<sub>6</sub>. Figure 2 shows the results of Rietveld analyses on powder X-ray diffraction (XED) patterns of the La<sub>2</sub>CuSnO<sub>6</sub>, Pr<sub>2</sub>CuSnO<sub>6</sub>, and Nd<sub>2</sub>- $CuSnO_6$  samples. The analyses were performed on the basis of the same space groupe  $(P2_1/m)$  as determined by Anderson et al.<sup>11</sup> The observed, calculated, and difference patterns as well as the allowed reflections are displayed in the figure. Data were analyzed assuming the presence of  $Ln_2Sn_2O_7$ . The estimated mass fractions were 2.40, 2.72, and 3.43%, respectively. Crystallographic data and the reliability factors are summarized in Table 1. As shown in Figure 3, lattice constants a, b, and c decreased with decreasing lanthanide ionic radius ( $R_{Ln}$ ), while  $\beta$  increased. The refined atomic positions are presented in Table 2. Cu-O bond lengths are calculated and listed in Table 3. Those in the  $CuO_2$  sheet are plotted against  $R_{Ln}$  in Figure 4 with closed circles. Plotted with open circles for Ln = La are those estimated from the neutron diffraction data.<sup>11</sup> The Cu1-O5 bonds tended to decrease with decreasing ionic radius (R<sub>Ln</sub>). However, contrary to expectation, Cu2-O8 bonds expanded slightly, and the other two bonds did not significantly change. This phenomenon can be explained by considering the Cu-O-Cu bond angles which are summarized in Table 3 and Figure 5. The average Cu-O-Cu bond

<sup>(14)</sup> Endoh, Y.; Matsuda, M.; Yamada, K.; Kakurai, K.; Hidaka, Y.; Shirane, G.; Birgeneau, R. J. Phys. Rev. 1989, B40, 7023.



**Figure 2.** Observed (+), calculated (solid line), and difference (below) XRD patterns of  $La_2CuSnO_6$ ,  $Pr_2CuSnO_6$ , and  $Nd_2-CuSnO_6$ . The upper set of tic marks indicates the calculated peak positions for  $Ln_2CuSnO_6$ , and the lower set represents those of  $Ln_2Sn_2O_7$ .

Table 1. Crystallographic Data of  $Ln_2CuSnO_6$  (Ln = La, Pr, and Nd)

| formula                          | La2CuSnO6 | Pr <sub>2</sub> CuSnO <sub>6</sub> | Nd <sub>2</sub> CuSnO <sub>6</sub> |
|----------------------------------|-----------|------------------------------------|------------------------------------|
| space group                      | $P2_1/m$  | $P2_{1}/m$                         | $P2_1/m$                           |
| a (Å)                            | 8.5032(1) | 8.4412(1)                          | 8.4100(2)                          |
| b (Å)                            | 7.8109(1) | 7.7395(1)                          | 7.7132(2)                          |
| <i>c</i> (Å)                     | 7.8131(1) | 7.7625(1)                          | 7.7400(2)                          |
| $\beta$ (deg)                    | 91.143(1) | 91.716(1)                          | 92.011(1)                          |
| $V(Å^3)$                         | 518.824   | 506.908                            | 501.774                            |
| radiation                        | Cu Ka     | Cu Ka                              | Cu Ka                              |
| monochromator                    | graphite  | graphite                           | graphite                           |
| Ζ                                | 4         | 4                                  | 4                                  |
| $2\theta$ range (deg)            | 20-120    | 20-120                             | 20-120                             |
| $2\theta$ step-scan increasement | 0.02      | 0.02                               | 0.02                               |
| $R_{\rm wp}$ (%)                 | 4.49      | 4.89                               | 4.54                               |
| $R_{\rm p}$ (%)                  | 3.40      | 3.70                               | 3.40                               |
| goodness-of fit                  | 1.0795    | 1.1828                             | 1.2004                             |
| -                                |           |                                    |                                    |

angle becomes smaller and the deviation from  $180^{\circ}$  larger with decreasing  $R_{\rm Ln}$ . The decrease in lattice constants results in an increased buckling of the CuO<sub>2</sub> plane.

Ln<sub>2</sub>CuSnO<sub>6</sub> consists of three kinds of 2D layers, CuO<sub>2</sub>, SnO<sub>2</sub>, and LaO layers. The ideal size of a CuO<sub>2</sub> layer is between those of the SnO<sub>2</sub> and the LaO layers because Sn<sup>4+</sup> has an ionic radius larger than Cu<sup>2+</sup> and a LaO layer has the rock salt configuration. The mismatching is compromised by tilting, rather than elastic deformation, of the CuO<sub>6</sub> and SnO<sub>6</sub> octahedra. This is the reason for the heavy buckling of the CuO<sub>2</sub> layers. The



**Figure 3.** Lattice parameters of La<sub>2</sub>CuSnO<sub>6</sub>, Pr<sub>2</sub>CuSnO<sub>6</sub>, Nd<sub>2</sub>-CuSnO<sub>6</sub>, and Sm<sub>2</sub>CuSnO<sub>6</sub> as a function of the ionic radius of the lanthanide ion ( $R_{Ln}$ ).



**Figure 4.** In-plane Cu–O bond length of  $Ln_2CuSnO_6$  (Ln = La, Pr, and Nd) as a function of the ionic radius of the lanthanides ion ( $R_{Ln}$ ).



**Figure 5.** Average Cu–O–Cu bond angle in a CuO<sub>2</sub> plane as a function of the ionic radius of the lanthanide ion ( $R_{Ln}$ ).

replacement of La by Pr and Nd results in a larger mismatch between the  $CuO_2$  and LnO layers and a more serious buckling of the  $CuO_2$ .

**Magnetic Property of Ln<sub>2</sub>CuSnO<sub>6</sub>.** Figure 6a shows the temperature dependence of magnetization divided by field (M/H) of La<sub>2</sub>CuSnO<sub>6</sub> measured in an external magnetic field of 100 Oe. When the sample is cooled in zero field, the magnetization measured on heating exhibits a maximum centered at 215 K. In contrast, on field-cooling the magnetization approaches

Table 2. Atomic Positions for  $Ln_2CuSnO_6$  (Ln = La, Pr, and Nd)

|                        |           |                | ,                                 |                      |       |
|------------------------|-----------|----------------|-----------------------------------|----------------------|-------|
| atom                   | site      | Х              | У                                 | Z                    | В     |
|                        |           | La             | a2CuSnO6                          |                      |       |
| La1                    | 2e        | 0.2110(9)      | 0.25                              | 0.276(1)             | 0.400 |
| La2                    | 2e        | 0.199(1)       | 0.25                              | 0.772(1)             | 0.400 |
| Las                    | 20        | 0.7588(8)      | 0.25                              | 0.786(1)             | 0.100 |
| LaJ                    | 20<br>20  | 0.7300(0)      | 0.25                              | 0.700(1)<br>0.975(1) | 0.400 |
| La4                    | ze        | 0.7704(8)      | 0.25                              | 0.275(1)             | 0.400 |
| Cul                    | za        | 0              | 0                                 | 0                    | 0.500 |
| Cu2                    | 2c        | 0              | 0                                 | 0.5                  | 0.500 |
| Sn1                    | 2b        | 0.5            | 0                                 | 0                    | 0.600 |
| Sn2                    | 2d        | 0.5            | 0                                 | 0.5                  | 0.600 |
| 01                     | 4f        | 0.029(4)       | -0.027(5)                         | 0.245(7)             | 1.000 |
| 02                     | 4f        | 0.272(4)       | -0.053(6)                         | -0.049(5)            | 1.000 |
| 03                     | ۸f        | 0.262(4)       | 0.061(6)                          | 0.546(5)             | 1 000 |
| 04                     | 46        | 0.202(4)       | 0.001(0)                          | 0.940(0)             | 1.000 |
| 04                     | 41        | 0.420(3)       | 0.037(4)                          | 0.244(4)<br>0.020(9) | 1.000 |
| 05                     | 2e        | 0.029(0)       | 0.25                              | 0.030(8)             | 1.000 |
| 06                     | ze        | 0.455(5)       | 0.25                              | -0.067(7)            | 1.000 |
| 07                     | 2e        | 0.594(5)       | 0.25                              | 0.531(7)             | 1.000 |
| 08                     | 2e        | -0.007(7)      | 0.25                              | 0.479(8)             | 1.000 |
|                        |           | Pi             | r <sub>2</sub> CuSnO <sub>6</sub> |                      |       |
| Pr1                    | 2e        | 0.2069(0)      | 0.25                              | 0.281(1)             | 0.400 |
| Pr2                    | 2e        | 0.1950(9)      | 0.25                              | 0.772(1)             | 0.400 |
| Pr3                    | 2e        | 0.7557(7)      | 0.25                              | 0.791(1)             | 0.400 |
| Pr4                    | 2e        | 0.7669(8)      | 0.25                              | 0.280(1)             | 0.400 |
| Cul                    | 22        | 0              | 0                                 | 0                    | 0 500 |
| Cur                    | 20        | 0              | 0                                 | 0.5                  | 0.500 |
| Cu <sup>2</sup><br>Cn1 | 20<br>21  | 05             | 0                                 | 0.5                  | 0.300 |
| SIII<br>Cm9            | 20<br>21  | 0.5            | 0                                 | 0                    | 0.400 |
| 01                     | 20<br>40  | 0.0            | 0 0 4 9 (4)                       | 0.0                  | 0.400 |
| 01                     | 41        | 0.040(4)       | -0.043(4)                         | 0.243(5)             | 1.000 |
| 02                     | 4t        | 0.251(3)       | -0.032(6)                         | -0.071(5)            | 1.000 |
| 03                     | 4f        | 0.271(5)       | 0.060(5)                          | 0.558(5)             | 1.000 |
| 04                     | 4f        | 0.379(5)       | 0.032(5)                          | 0.229(5)             | 1.000 |
| 05                     | 2e        | 0.020(6)       | 0.25                              | 0.014(8)             | 1.000 |
| 06                     | 2e        | 0.466(5)       | 0.25                              | -0.086(7)            | 1.000 |
| 07                     | 2e        | 0.567(5)       | 0.25                              | 0.533(8)             | 1.000 |
| 08                     | 2e        | -0.002(6)      | 0.25                              | 0.435(7)             | 1.000 |
| 00                     | ~~        | 0.002(0)<br>NL | d.CuSnO.                          | 0.100(1)             | 11000 |
| NLJ1                   | 9.        | 0.9074(6)      | 12CuSIIO6                         | 0.909(1)             | 0.400 |
| INUI<br>N IO           | 2e        | 0.2074(0)      | 0.25                              | 0.282(1)             | 0.400 |
| Nd2                    | ze        | 0.1918(7)      | 0.25                              | 0.771(1)             | 0.400 |
| Nd3                    | ze        | 0.7541(6)      | 0.25                              | 0.7954(9)            | 0.400 |
| Nd4                    | 2e        | 0.7672(7)      | 0.25                              | 0.2828(9)            | 0.400 |
| Cu1                    | 2a        | 0              | 0                                 | 0                    | 0.500 |
| Cu2                    | 2c        | 0              | 0                                 | 0.5                  | 0.500 |
| Sn1                    | 2b        | 0.5            | 0                                 | 0                    | 0.400 |
| Sn2                    | 2d        | 0.5            | 0                                 | 0.5                  | 0.400 |
| 01                     | 4f        | 0.039(4)       | -0.048(4)                         | 0.244(6)             | 1.000 |
| 02                     | 4f        | 0 256(3)       | -0.041(6)                         | -0.065(5)            | 1 000 |
| 03                     | 4f        | 0.267(4)       | 0.053(5)                          | 0.559(5)             | 1 000 |
| 01                     | -11<br>1f | 0.200(4)       | 0.033(3)                          | 0.000(0)             | 1 000 |
| 04                     | 41        | 0.000(4)       | 0.030(4)                          | 0.233(3)             | 1.000 |
| 05                     | ze        | 0.023(5)       | 0.25                              | 0.029(8)             | 1.000 |
| 06                     | ze        | 0.458(5)       | 0.2500                            | 0 - 0.092(7)         | 1.000 |
| 07                     | 2e        | 0.566(5)       | 0.25                              | 0.525(8)             | 1.000 |
| 08                     | 2e        | -0.002(5)      | 0.25                              | 0.428(7)             | 1.000 |
|                        |           |                |                                   |                      |       |

Table 3. Selected Bond Lengths (Å) and Angles (deg) for Ln<sub>2</sub>CuSnO<sub>6</sub> (Ln = La, Pr, and Nd)

|               | La2CuSnO6 | Pr <sub>2</sub> CuSnO <sub>6</sub> | Nd <sub>2</sub> CuSnO <sub>6</sub> |
|---------------|-----------|------------------------------------|------------------------------------|
| in-plane      |           |                                    |                                    |
| Ĉu1-01        | 1.94(5)   | 1.93(4)                            | 1.94(4)                            |
| Cu1-05        | 1.982(8)  | 1.945(5)                           | 1.951(8)                           |
| Cu2-01        | 2.02(5)   | 2.06(4)                            | 2.05(4)                            |
| Cu2-08        | 1.960(5)  | 1.99(1)                            | 2.00(1)                            |
| out-of-plane  |           |                                    |                                    |
| Cu1-02        | 2.39(3)   | 2.22(3)                            | 2.25(3)                            |
| Cu2-O3        | 2.30(3)   | 2.37(4)                            | 2.31(6)                            |
| Cu1-O5-Cu1    | 160.1     | 168.1                              | 162.4                              |
| Cu2-O8-Cu2    | 170.1     | 151.1                              | 147.9                              |
| Cu1-O1-Cu2    | 160.8     | 152.3                              | 151.2                              |
| av bond angle | 163.0     | 156.0                              | 151.8                              |

saturation at low temperature. The ferromagnetic hysteresis can also be seen clearly in the M-H curve, as shown in Figure 6b. La<sup>3+</sup> and Sn<sup>4+</sup> are both nonmagnetic, so this behavior directly demonstrates the



**Figure 6.** Temperature dependence of the magnetic susceptibility of  $La_2CuSnO_6$  measured in a applied field of 100 Oe (a). (b) Magnetization curves measured at 5, 150, and 230 K.

antiferromagnetic nature of the CuO<sub>2</sub> lattice accompanied by a spin-canted weak ferromagnetism, as reported before.<sup>12</sup> The saturation magnetization measured on cooling to 5 K corresponds to a ferromagnetic moment of  $6.4 \times 10^{-3} \mu_{\rm B}/{\rm Cu}$ . If the Cu<sup>2+</sup> ions are assumed to have an atomic moment of 0.5  $\mu_{\rm B}$  as in Nd<sub>2</sub>CuO<sub>4</sub>,<sup>14</sup> the canting angle is calculated to be 0.37°. This is considerably larger than that of Y<sub>2</sub>CuO<sub>4</sub>, which has the T' structure (0.05°),<sup>15</sup> possibly reflecting larger buckling of the CuO<sub>2</sub> layer in the present compound.

Magnetism of Pr<sub>2</sub>CuSnO<sub>6</sub> and Nd<sub>2</sub>CuSnO<sub>6</sub>. Figure 7a shows the *M*/*H* data of Pr<sub>2</sub>CuSnO<sub>6</sub> measured at 100 Oe. The data are almost identical to that of La<sub>2</sub>-CuSnO<sub>6</sub> above 100 K but are significantly different at lower temperatures. Because Pr<sup>3+</sup> has an atomic moment, the magnetization should reflect contributions from the Cu<sup>2+</sup> and Pr<sup>3+</sup> ions. The solid line in Figure 7a represents the estimated total M/H as a sum of the susceptibility of the paramagnetic Pr<sup>3+</sup> ion and the zerofield cooled M/H data for La<sub>2</sub>CuSnO<sub>6</sub>. The former was calculated on the basis of the theoretical value of  $\mu_J$  =  $g\mu_{\rm B}[J(J+1)] = 3.58 \,\mu_{\rm B}$ . For comparison,  $\mu_J = 3.62 \,\mu_{\rm B}$ for Nd<sup>3+</sup> and 0.845  $\mu_{\rm B}$  for Sm<sup>3+</sup>. The observed values at low temperatures below 10 K are considerably larger than the estimation. This indicates that Pr in this compound also has some magnetic ordering. In the MHdata measured in a lower field of 5 Oe, as shown in Figure 7b, an antiferromagnetic-like cusp can be seen at 35 K. This is close to the ordering temperature of Sm and Gd moments of Sm<sub>2</sub>CuO<sub>4</sub> (6 K) and Gd<sub>2</sub>CuO<sub>4</sub> (7 K).16

Figure 8 shows the M/H data of Nd<sub>2</sub>CuSnO<sub>6</sub> measured at 100 Oe on heating and cooling. There are three distinct features: a lack of the clear difference between

<sup>(15)</sup> Okuda, H.; Takano, M.; Takeda, Y. *Phys. Rev.* 1990, *B42*, 6813.
(16) Johnston, D. C. *Handbook of Magnetic Materials*; Elsevier Science: Amsterdam, 1997; Vol. 10, Chapter 1.



**Figure 7.** Temperature dependence of the magnetic susceptibility of  $Pr_2CuSnO_6$  measured at 100 (a) and 5 Oe (b).



Figure 8. Temperature dependence of the magnetic susceptibility of  $Nd_2CuSnO_6$  measured at 100 Oe. Inset represents the data collected in the temperature range of 150-300 K.

the data collected on heating and cooling below 200 K, an antiferromagnetic-like cusp at 110 K, and a large magnetization at lower temperatures. To investigate the reason for the absence of the difference between the ZFC and FC data below 200 K, the sample was cooled in zero field and the magnetic field was applied at 150 K before measuring the susceptibility on heating. The result is shown in the inset to Figure 8. The ferromagnetic hysteresis, owing to the weak ferromagnetism of the  $Cu^{2+}$  ions, reappeared. This indicates that Cu spins exhibit essentially the same spin-canted weak ferromagnetism as was observed in La<sub>2</sub>CuSnO<sub>6</sub>. T<sub>N</sub> is plotted as a function of the ionic radius of Ln in Figure 9. The observed  $T_{\rm N}$  range of 200–235 K is similar to that of Nd<sub>2</sub>CuO<sub>4</sub>, 255 K.<sup>14</sup> This suggests that the magnitude of antiferromagnetic interaction  $(\mathcal{J})$  is approximately the same; both are magnetically twodimensional, and the conduction bands are of  $d_{x^2-y^2}$ parentage. The decrease in  $T_{\rm N}$  with the smaller Ln ion can be attributed to the decrease of *J* between Cu spins as a result of the increased buckling of the Cu-O-Cu bond in the  $CuO_2$  planes. If the unpaired electron is in the  $d_{z^2}$  orbital, the antiferromagnetic interaction is



**Figure 9.** Néel temperature of Cu sublattice of  $Ln_2CuSnO_6$  (Ln = La, Pr, Nd, and Sm) as a function of  $R_{Ln}$ .

mediated through the long Cu–O–Sn–O–Cu bonds and should be much weaker than the superexchange through the Cu–O–Cu bonds in a CuO<sub>2</sub> plane. Moreover, in this case, the system should be one-dimensional approximately. For these two reasons,  $T_N$  should be much lower. The assumption that the conduction bands are of  $d_{x^2-y^2}$  parentage is consistent with a recent band calculation;<sup>17</sup> nonetheless the shrinkage of the out-ofplane dimension with hole-doping observed in La<sub>2</sub>-CuSnO<sub>6</sub> cannot be explained easily.

The nonlinearlity at 150 K corresponding to the weak ferromagnetism of Cu ions can be seen in the magnetization curve shown in Figure 10. However, the spontaneous moment of 0.65  $\mu_{\rm B}$ /mol at 2 K is too large to be assigned to the Cu sublattice only. Therefore, it is reasonable to conclude that Nd sublattice orders in a canted antiferromagnetic spin structure as well. We assume that both ferromagnetic moments order antiferromagnetically at 110 K. There are two Néel temperatures in Nd<sub>2</sub>CuSnO<sub>6</sub>. The first one  $(T_{N1})$  is the antiferromagnetic transition temperature of the Cu sublattice. The ordering is faintly ferromagnetic, and clear hysteresis is observed between the ZFC and FC data below the transition temperature when the data are collected in the temperature range above the second transition temperature ( $T_{N2}$ ). The Nd sublattice orders antiferromagnetically, and the ordering is weakly ferromagnetically also because of spin canting. Therefore, the susceptibility data show clear hysteresis below  $T_{N2}$ . At  $T_{\rm N2}$ , both ferromagnetic moments (on the Cu and Nd sublattices) order antiferromagnetically.  $T_{N2}$  was also observed in Pr<sub>2</sub>CuSnO<sub>6</sub> and Sm<sub>2</sub>CuSnO<sub>6</sub>, as shown in Figure 11. However, why only Nd<sub>2</sub>CuSnO<sub>6</sub> has an anomalously high  $T_{\rm N2}$  is not clear. The magnetic moment of  $\rm Nd^{3+}$  is close to that of  $\rm Pr^{3+}$ , whereas  $\rm Sm^{3+}$ is only about 20% of their values. Nonetheless Nd<sub>2</sub>-CuSnO<sub>6</sub> has a  $T_{N2}$  at 110 K, and the others are below 40 K.

Another possible explanation is to assume the occurrence of a spin-flop transition at 110 K. Suppose, for example, the spin axis changes from an in-plane axis to out-of-plane axis or vice versa. If the canting angle is smaller in the low-temperature phase, the weak ferromagnetic moment will drop as temperature decreases through the phase boundary. If the anisotropy of the weak-ferromagnetic moment is larger for the lowtemperature phase, the difference between the FC and

<sup>(17)</sup> Novikov, D. J.; Freeam, A. J.; Poeppelmeier, K. R.; Zhukov, V. P. *Physica* **1995**, *C252*, 7.



**Figure 10.** Magnetization curve of  $Nd_2CuSnO_6$  measured at 2, 5, and 50 K (a) and 50, 150, and 230 K (b). (c) Data collected by means of an extraction method at 5 K.



Figure 11. Temperature dependence of the magnetic susceptibility of  $Sm_2CuSnO_6$  measured at 100 Oe.

ZFC data will be enhanced for the low-temperature phase.

**Hole Doping of Nd<sub>2</sub>CuSnO<sub>6</sub>.** Hole doping of Nd<sub>2</sub>-CuSnO<sub>6</sub> was carried out by substituting Ca<sup>2+</sup> for Nd<sup>3+</sup>. The sample was synthesized from a mixture of Nd<sub>2</sub>-CuSnO<sub>6</sub>, Ca<sub>2</sub>CuO<sub>3</sub>, and SnO<sub>2</sub> at the same conditions used to prepare the pure sample. A 1 wt % amount of KClO<sub>4</sub> was added to the sample to generate an oxidizing atmosphere. Although a high-pressure—high-temperature treatment was repeated twice, a considerable amount of impurity phases remained in the final

Table 4. Lattice Constants of Nd2CuSnO6 and<br/>Nd1.9Ca0.1CuSnO6



**Figure 12.** Temperature dependence of the magnetic susceptibility of  $Nd_{1.9}Ca_{0.1}CuSnO_6$  measured at 100 Oe.



**Figure 13.** Observed (+), calculated (solid line), and difference (below) XRD patterns of  $La_2CuZrO_6$ . The upper set of tic marks indicates the calculated peak positions for  $La_2CuZrO_6$ , and the lower set represents those of  $La_2Zr_2O_7$ .

Table 5. Crystallographic Data of La<sub>2</sub>CuZrO<sub>6</sub>

| formula       | La <sub>2</sub> CuZrO <sub>6</sub> | monochromator                    | graphite |
|---------------|------------------------------------|----------------------------------|----------|
| space group   | $P2_1/m$                           | Ζ                                | 4        |
| a (Å)         | 8.5683(1)                          | $2\theta$ range (deg)            | 20-120   |
| b (Å)         | 7.8597(1)                          | $2\theta$ step-scan increasement | 0.02     |
| c (Å)         | 7.8557(1)                          | $R_{\rm wp}$ (%)                 | 5.95     |
| $\beta$ (deg) | 91.512(1)                          | $R_{\rm p}$ (%)                  | 4.43     |
| $V(Å^3)$      | 528.934                            | goodness-of fit                  | 1.4424   |
| radiation     | Cu Ka                              | 0                                |          |

product. The lattice constants of  $Nd_{1.9}Ca_{0.1}CuSnO_6$  were refined and are compared with those of the pure sample in Table 4. All the axes decreased in this case.

Figure 12 shows the M/H data of Nd<sub>1.9</sub>Ca<sub>0.1</sub>CuSnO<sub>6</sub>. The Néel temperature decreased with doping as was the case with La<sub>2</sub>CuSnO<sub>6</sub> and high  $T_c$  superconductors. Yet, similar to La<sub>2</sub>CuSnO<sub>6</sub>, no superconducting transition was observed.

**La<sub>2</sub>CuZrO<sub>6</sub>.** La<sub>2</sub>CuMO<sub>6</sub> (M = Ti, Ir, Zr) were treated at high pressure and high temperature to look for a new variation of layered double perovskite. La<sub>2</sub>CuTiO<sub>6</sub> and La<sub>2</sub>CuIrO<sub>6</sub> did not change their structures after treatment at 8 GPa and 1200 °C. Peaks corresponding to a new phase were found in the XRD pattern of La<sub>2</sub>-CuZrO<sub>6</sub>, while considerable amounts of La<sub>2</sub>CuO<sub>4</sub> and La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> remained. An almost single phase sample of La<sub>2</sub>CuZrO<sub>6</sub> was synthesized directly from a mixture of La<sub>2</sub>O<sub>3</sub>, CuO, and ZrO<sub>2</sub> at 6 GPa and 1100 °C. The XRD

 Table 6. Atomic Positions for La<sub>2</sub>CuZrO<sub>6</sub>

|      |            |           |           | -         |       |
|------|------------|-----------|-----------|-----------|-------|
| atom | site       | X         | У         | Ζ         | В     |
| La1  | 2e         | 0.206(1)  | 0.25      | 0.279(2)  | 0.400 |
| La2  | 2e         | 0.197(1)  | 0.25      | 0.774(2)  | 0.400 |
| La3  | 2e         | 0.7610(9) | 0.25      | 0.787(2)  | 0.400 |
| La4  | 2e         | 0.772(1)  | 0.25      | 0.279(2)  | 0.400 |
| Cu1  | 2a         | 0         | 0         | 0         | 0.500 |
| Cu2  | 2c         | 0         | 0         | 0.5       | 0.500 |
| Zr1  | 2b         | 0.5       | 0         | 0         | 0.600 |
| Zr2  | 2d         | 0.5       | 0         | 0.5       | 0.600 |
| 01   | <b>4</b> f | 0.050(3)  | -0.026(7) | 0.247(6)  | 1.000 |
| O2   | <b>4</b> f | 0.267(3)  | -0.032(7) | -0.072(6) | 1.000 |
| O3   | <b>4</b> f | 0.266(5)  | 0.037(8)  | 0.574(6)  | 1.000 |
| 04   | <b>4</b> f | 0.422(4)  | 0.049(5)  | 0.248(5)  | 1.000 |
| O5   | 2e         | 0.019(7)  | 0.25      | 0.015(9)  | 1.000 |
| O6   | 2e         | 0.458(6)  | 0.25      | -0.075(8) | 1.000 |
| 07   | 2e         | 0.572(6)  | 0.25      | 0.541(9)  | 1.000 |
| 08   | 2e         | -0.005(8) | 0.25      | 0.462(9)  | 1.000 |
|      |            |           |           |           |       |

pattern shown in Figure 13 is that expected of the layered double perovskite structure. A small amount of La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>, the estimated mass fraction being 3.26%, was present. Crystal data and reliability factors are summarized in Table 5. The refined atomic positions are presented in Table 6. The calculated Cu–O bond lengths and Cu–O–Cu bond angles are listed in Table 7 together with those of La<sub>2</sub>CuSnO<sub>6</sub>. The in-plane bond lengths expanded slightly, and the average Cu–O–Cu bond angle decreased again. The replacement of Zr for Sn induced a larger mismatch between the CuO<sub>2</sub> and ZrO<sub>2</sub> layers and, as a result, the CuO<sub>2</sub> layer buckled even more.

## Conclusions

 $Ln_2CuSnO_6$  (Ln = Pr, Nd, and Sm) were stabilized in the same layered double perovskite structure as  $La_2$ -CuSnO<sub>6</sub> at high pressures of 6–8 GPa and high temperatures of 1000–1200 °C. Replacement of La by smaller lanthanides increased the buckling in the CuO<sub>2</sub>

Azuma et al.

Table 7. Selected Bond Lengths (Å) and Angles (deg) for La<sub>2</sub>CuSnO<sub>6</sub> and La<sub>2</sub>CuZrO<sub>6</sub>

| La2CuSnO6   | La <sub>2</sub> CuZrO <sub>6</sub>                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bond Length |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                 |
| Ũ           |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                 |
| 1.94(5)     | 1.99(5)                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                 |
| 1.982(8)    | 1.975(6)                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |
| 2.02(5)     | 2.06(5)                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                 |
| 1.960(5)    | 1.99(1)                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                 |
| 2.39(3)     | 2.38(3)                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                 |
| 2.30(3)     | 2.35(4)                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                 |
| Bond Angle  |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                 |
| 160.1       | 168.4                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                 |
| 170.1       | 163.0                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                 |
| 160.8       | 152.8                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                 |
| 163.0       | 159.2                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                 |
|             | La <sub>2</sub> CuSnO <sub>6</sub><br>Bond Length<br>1.94(5)<br>1.982(8)<br>2.02(5)<br>1.960(5)<br>2.39(3)<br>2.30(3)<br>Bond Angle<br>160.1<br>170.1<br>160.8<br>163.0 | $\begin{tabular}{ c c c c c } \hline La_2CuSnO_6 & La_2CuZrO_6 \\ \hline Bond Length & & & \\ \hline 1.94(5) & 1.99(5) \\ 1.982(8) & 1.975(6) \\ 2.02(5) & 2.06(5) \\ 1.960(5) & 1.99(1) \\ \hline 2.39(3) & 2.38(3) \\ 2.30(3) & 2.35(4) \\ \hline Bond Angle & & \\ 160.1 & 168.4 \\ 170.1 & 163.0 \\ 160.8 & 152.8 \\ 163.0 & 159.2 \\ \hline \end{tabular}$ |

layers. As a result, the antiferromagnetic transition temperature of the Cu sublattice decreased monotonically. The magnetic moment of Nd ion was found to exhibit weak ferromagnetism as well. La<sub>2</sub>CuZrO<sub>6</sub>, a new member of layered double perovskite with a tetravalent cation, was found at 6 GPa and 1100 °C. Replacement of Sn by larger Zr also caused the buckling of the CuO<sub>2</sub> layer to increase.

**Acknowledgment.** The authors express their thanks to Prof. K. R. Poeppelmeier for useful discussion as a Japan Society for the Promotion of Science (JSPS) fellow. This work was partly supported by a Grant-in Aid for Scientific Research on Priority Areas, "Anomalous metallic state near the Mott transition", of the Ministry of Education, Science and Culture, Japan, and CREST (Core Research for Evolutional Science and Technology) of the Japan Science and Technology Corp. (JST).

CM980217G